The K matrix and the bar phase parameters

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1977 J. Phys. A: Math. Gen. 101057
(http://iopscience.iop.org/0305-4470/10/6/025)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 14:01

Please note that terms and conditions apply.

COMMENT

The K matrix and the bar phase parameters

M W Kermode and A McKerrell
Department of Applied Mathematics and Theoretical Physics, University of Liverpool, PO Box 147, Liverpool L69 3BX, UK

Received 10 March 1977

Abstract

The elements of the \mathbf{K} matrix are expressed in terms of the bar phase parameters. It is shown that an unnecessary constraint has been imposed in the recent phase-shift analysis of the neutron-proton scattering data since an approximation to the K matrix at low energies is not valid if one phase parameter takes the value $\frac{1}{2} \pi$.

The recent phase-shift analysis of the neutron-proton scattering data by Arndt et al (1977) gives rise to an unusual energy dependence of the mixing parameter ϵ in the ${ }^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{D}_{1}$ state. In particular, ϵ is zero at two separate energies. However, the first zero, at an energy of about 18 MeV was imposed on the analysis as a result of a K matrix argument which appeared to suggest that it was a consequence of the first phase parameter taking the value of $\frac{1}{2} \pi$ radians. Counter examples are the Reid potentials (1968) for which Arndt's K matrix description obviously fails. We now present a mathematical discussion of this failure using explicit formulae for the \mathbf{K} matrix elements in terms of the bar phase parameters.

The relations between the $\mathbf{S}, \mathbf{T}, \mathbf{K}$ and \mathbf{M} matrices are given in the paper by Ross and Shaw (1960). Arndt et al considered the relation between the \mathbf{T} and \mathbf{K} matrices. We consider the relation between the \mathbf{K} and \mathbf{M} matrices since the expressions for the \mathbf{M} matrix elements in terms of the bar phase parameters are relatively straightforward and have already been reported in the literature (Kermode 1967, McKerrell et al 1977). Hence, leaving off the bars for simplicity, we take as our starting point the expression

$$
K=A\left(\begin{array}{rr}
\cot \Delta_{22} & -\cot \Delta_{12} \\
-\cot \Delta_{12} & \cot \Delta_{11}
\end{array}\right)
$$

where

$$
\begin{aligned}
& A^{-1}=\cot \Delta_{11} \cot \Delta_{22}-\cot ^{2} \Delta_{12} \\
& \Delta_{11}=\delta_{1}-\tan ^{-1}\left(\tan ^{2} \epsilon \cot \delta_{2}\right) \\
& \Delta_{22}=\delta_{2}-\tan ^{-1}\left(\tan ^{2} \epsilon \cot \delta_{1}\right)
\end{aligned}
$$

and

$$
\tan \Delta_{12}=-\cot \epsilon \sin \delta_{1} \sin \delta_{2}+\tan \epsilon \cos \delta_{1} \cos \delta_{2}
$$

In relation to the notation used by Arndt et al for the particular case of ${ }^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{D}_{1}$ scattering $\delta_{1}=\delta_{\mathrm{S}}$ and $\delta_{2}=\delta_{\mathrm{D}}$.

After a little algebra, we find that

$$
K_{11}=\left(\tan \delta_{1}-\tan ^{2} \epsilon \cot \delta_{2}\right) \alpha / \gamma \beta_{12}
$$

and

$$
K_{12}=\tan \epsilon\left(1-\tan ^{2} \epsilon \cot \delta_{1} \cot \delta_{2}\right) / \gamma \cos \delta_{1} \cos \delta_{2}
$$

where

$$
\begin{aligned}
& \alpha=1+\tan ^{4} \epsilon+\tan ^{2} \epsilon\left(\tan \delta_{1} \cot \delta_{2}+\tan \delta_{2} \cot \delta_{1}\right), \\
& \beta_{12}=1+\tan ^{2} \epsilon \tan \delta_{1} \cot \delta_{2}
\end{aligned}
$$

and

$$
\gamma=\alpha-\tan ^{2} \epsilon \tan \delta_{1} \tan \delta_{2} \operatorname{cosec}^{2} \delta_{1} \operatorname{cosec}^{2} \delta_{2} .
$$

The expression for K_{22} is obtained from that for K_{11} by interchanging the suffices 1 and 2.

For $\mathrm{n}-\mathrm{p},{ }^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{D}_{1}$, scattering, we consider the situation at low energies where $\tan \delta_{1}, \epsilon$ and δ_{2} are of order k, k^{3} and k^{5} respectively. Then α and β_{12} are $1+\mathrm{O}\left(k^{2}\right)$ and γ is of order unity. In fact we find

$$
K_{11}=\tan \delta_{1}\left(1+\mathrm{O}\left(k^{10}\right)\right) \quad \text { and } \quad \cos \delta_{1} K_{12}=\tan \epsilon\left(1+\mathrm{O}\left(k^{10}\right)\right)
$$

in practical agreement with the results of Arndt et al. However, these authors use the approximate result to argue that when δ_{1} passes through $\frac{1}{2} \pi, \epsilon$ changes sign provided that K_{12} is not also zero. The error in Arndt's argument lies in the application of an approximate formula in a region where the approximation is not valid, since $\tan \boldsymbol{\delta}_{1} \neq$ $\mathrm{O}(k)$. It is a simple matter to show that if $\delta_{1}=\frac{1}{2} \pi$, then $-\tan \epsilon \sin \delta_{2} K_{12}=1$ which puts no constraint whatsoever on the mixing parameter ϵ, as expected since ϵ is independent of δ_{1} and δ_{2} and we also have the particular example of the Reid potential.

The constraint imposed by Arndt et al is not justified. However, it remains a possibility that nature prefers a zero value for ϵ at or near that of Arndt's so the results of the phase-shift analysis need not be rejected, although it would be useful to have an analysis without the constraint.

References

Arndt R A, Hackman R H and Roper L D 1977 Phys. Rev. C 15 1002-20

